Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.585
Filtrar
1.
Circ Heart Fail ; 17(4): e011110, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38567527

RESUMO

BACKGROUND: Mutations in LMNA encoding nuclear envelope proteins lamin A/C cause dilated cardiomyopathy. Activation of the AKT/mTOR (RAC-α serine/threonine-protein kinase/mammalian target of rapamycin) pathway is implicated as a potential pathophysiologic mechanism. The aim of this study was to assess whether pharmacological inhibition of mTOR signaling has beneficial effects on heart function and prolongs survival in a mouse model of the disease, after onset of heart failure. METHODS: We treated male LmnaH222P/H222P mice, after the onset of heart failure, with placebo or either of 2 orally bioavailable mTOR inhibitors: everolimus or NV-20494, a rapamycin analog highly selective against mTORC1. We examined left ventricular remodeling, and the cell biological, biochemical, and histopathologic features of cardiomyopathy, potential drug toxicity, and survival. RESULTS: Everolimus treatment (n=17) significantly reduced left ventricular dilatation and increased contractility on echocardiography, with a 7% (P=0.018) reduction in left ventricular end-diastolic diameter and a 39% (P=0.0159) increase fractional shortening compared with placebo (n=17) after 6 weeks of treatment. NV-20494 treatment (n=15) yielded similar but more modest and nonsignificant changes. Neither drug prevented the development of cardiac fibrosis. Drug treatment reactivated suppressed autophagy and inhibited mTORC1 signaling in the heart, although everolimus was more potent. With regards to drug toxicity, everolimus alone led to a modest degree of glucose intolerance during glucose challenge. Everolimus (n=20) and NV-20494 (n=20) significantly prolonged median survival in LmnaH222P/H222P mice, by 9% (P=0.0348) and 11% (P=0.0206), respectively, compared with placebo (n=20). CONCLUSIONS: These results suggest that mTOR inhibitors may be beneficial in patients with cardiomyopathy caused by LMNA mutations and that further study is warranted.


Assuntos
Cardiomiopatias , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Insuficiência Cardíaca , Camundongos , Humanos , Masculino , Animais , Everolimo/farmacologia , Everolimo/uso terapêutico , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Inibidores de MTOR , Cardiomiopatias/tratamento farmacológico , Cardiomiopatias/genética , Cardiomiopatias/patologia , Mutação , Serina-Treonina Quinases TOR , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Mamíferos/metabolismo
2.
Genome Biol ; 25(1): 77, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519987

RESUMO

BACKGROUND: B-type lamins are critical nuclear envelope proteins that interact with the three-dimensional genomic architecture. However, identifying the direct roles of B-lamins on dynamic genome organization has been challenging as their joint depletion severely impacts cell viability. To overcome this, we engineered mammalian cells to rapidly and completely degrade endogenous B-type lamins using Auxin-inducible degron technology. RESULTS: Using live-cell Dual Partial Wave Spectroscopic (Dual-PWS) microscopy, Stochastic Optical Reconstruction Microscopy (STORM), in situ Hi-C, CRISPR-Sirius, and fluorescence in situ hybridization (FISH), we demonstrate that lamin B1 and lamin B2 are critical structural components of the nuclear periphery that create a repressive compartment for peripheral-associated genes. Lamin B1 and lamin B2 depletion minimally alters higher-order chromatin folding but disrupts cell morphology, significantly increases chromatin mobility, redistributes both constitutive and facultative heterochromatin, and induces differential gene expression both within and near lamin-associated domain (LAD) boundaries. Critically, we demonstrate that chromatin territories expand as upregulated genes within LADs radially shift inwards. Our results indicate that the mechanism of action of B-type lamins comes from their role in constraining chromatin motion and spatial positioning of gene-specific loci, heterochromatin, and chromatin domains. CONCLUSIONS: Our findings suggest that, while B-type lamin degradation does not significantly change genome topology, it has major implications for three-dimensional chromatin conformation at the single-cell level both at the lamina-associated periphery and the non-LAD-associated nuclear interior with concomitant genome-wide transcriptional changes. This raises intriguing questions about the individual and overlapping roles of lamin B1 and lamin B2 in cellular function and disease.


Assuntos
Cromatina , Lamina Tipo B , Animais , Lamina Tipo B/genética , Heterocromatina , Hibridização in Situ Fluorescente , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Laminas , Expressão Gênica , Mamíferos/genética
3.
Cell Commun Signal ; 22(1): 197, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539233

RESUMO

Severe cardiac remodeling leading to heart failure in individuals harboring pathogenic LMNA variants, known as cardiolaminopathy, poses a significant clinical challenge. Currently, there is no effective treatment for lamin-related diseases. Exploring the intricate molecular landscape underlying this condition, with a specific focus on abnormal mechanotransduction, will propel our understanding of cardiolaminopathy. The LMNA gene undergoes alternative splicing to create A-type lamins, a part of the intermediate filament protein family. A-type lamins are located underneath the nuclear envelope, and given their direct interaction with chromatin, they serve as mechanosensory of the cell by interacting with the cytoskeleton and safeguarding the transcriptional program of cells. Nucleated cells in the cardiovascular system depend on precise mechanical cues for proper function and adaptation to stress. Mechanosensitive signaling pathways are essential in regulating mechanotransduction. They play a pivotal role in various molecular and cellular processes and commence numerous downstream effects, leading to transcriptional activation of target genes involved in proliferation, migration, and (anti-)apoptosis. Most pathways are known to be regulated by kinases, and this area remains largely understudied in cardiomyopathies.Heart failure is linked to disrupted mechanotransduction, where LMNA mutations affect nuclear integrity, impacting the response to extracellular matrix signals and the environment. The Hippo pathway, anchored by YAP1/WWTR1, emerges as a central player by orchestrating cellular responses to mechanical signals. However, the involvement of Hippo and YAP1/WWTR1 in cardiolaminopathy is unclear and likely mutation- and tissue-specific, warranting further investigation. Here, we highlight the involvement of multiple signaling pathways in mechanotransduction in cardiolaminopathy. We delve into (non-)canonical functions of key signaling components, which may hold critical clues for understanding disease pathogenesis. In summary, we comprehensively examine the mechanobiology of A-type lamins, the role of mechanosensitive signaling pathways, and their intricate interplay in the pathogenesis of cardiolaminopathy. A better understanding of these mechanisms is paramount for developing targeted therapies and interventions for individuals afflicted with this debilitating cardiac condition. Prior studies overlooked accurate gene nomenclature in protein and pathway names. Our review addresses this gap, ensuring precision by aligning names with correct gene nomenclature.


Mutations in the A-type lamin gene (LMNA) can cause a laminopathy. A specific manifestation of this disease leads to cardiolaminopathy, a serious heart condition. The lamin network, located at the inner nuclear membrane, is a central player in transforming forces within cells. As cells move and function, they rely on the ability to sense and respond to these forces, a process named mechanosensing and -response. This review provides an overview of the key molecular pathways involved in the development of heart failure. The molecular mechanisms underlying LMNA cardiomyopathy are poorly understood because the interaction between the signaling pathways is challenging to elucidate. Deciphering these pathways is key to understanding the underlying mechanisms of disease and finding novel targets to alter the pathways and lessen the symptoms of diseases.


Assuntos
Cardiomiopatias , Insuficiência Cardíaca , Humanos , Mecanotransdução Celular , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Mutação/genética , Insuficiência Cardíaca/genética , Biofísica
4.
Cell Mol Life Sci ; 81(1): 141, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485766

RESUMO

Human papillomavirus (HPV) infection is a primary cause of cervical and head-and-neck cancers. The HPV genome enters the nucleus during mitosis when the nuclear envelope disassembles. Given that lamins maintain nuclear integrity during interphase, we asked to what extent their loss would affect early HPV infection. To address this question, we infected human cervical cancer cells and keratinocytes lacking the major lamins with a HPV16 pseudovirus (HP-PsV) encoding an EGFP reporter. We found that a sustained reduction or complete loss of lamin B1 significantly increased HP-PsV infection rate. A corresponding greater nuclear HP-PsV load in LMNB1 knockout cells was directly related to their prolonged mitotic window and extensive nuclear rupture propensity. Despite the increased HP-PsV presence, EGFP transcript levels remained virtually unchanged, indicating an additional defect in protein turnover. Further investigation revealed that LMNB1 knockout led to a substantial decrease in autophagic capacity, possibly linked to the persistent activation of cGAS by cytoplasmic chromatin exposure. Thus, the attrition of lamin B1 increases nuclear perviousness and attenuates autophagic capacity, creating an environment conducive to unrestrained accumulation of HPV capsids. Our identification of lower lamin B1 levels and nuclear BAF foci in the basal epithelial layer of several human cervix samples suggests that this pathway may contribute to an increased individual susceptibility to HPV infection.


Assuntos
Lamina Tipo B , Infecções por Papillomavirus , Feminino , Humanos , Lamina Tipo B/genética , Lamina Tipo B/metabolismo , Infecções por Papillomavirus/genética , Membrana Nuclear/metabolismo , Mitose , Cromossomos/metabolismo , Lamina Tipo A/genética , Lamina Tipo A/metabolismo
5.
Nat Cell Biol ; 26(4): 567-580, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538837

RESUMO

Defects in the prelamin A processing enzyme caused by loss-of-function mutations in the ZMPSTE24 gene are responsible for a spectrum of progeroid disorders characterized by the accumulation of farnesylated prelamin A. Here we report that defective prelamin A processing triggers nuclear RIPK1-dependent signalling that leads to necroptosis and inflammation. We show that accumulated prelamin A recruits RIPK1 to the nucleus to facilitate its activation upon tumour necrosis factor stimulation in ZMPSTE24-deficient cells. Kinase-activated RIPK1 then promotes RIPK3-mediated MLKL activation in the nucleus, leading to nuclear envelope disruption and necroptosis. This signalling relies on prelamin A farnesylation, which anchors prelamin A to nuclear envelope to serve as a nucleation platform for necroptosis. Genetic inactivation of necroptosis ameliorates the progeroid phenotypes in Zmpste24-/- mice. Our findings identify an unconventional nuclear necroptosis pathway resulting from ZMPSTE24 deficiency with pathogenic consequences in progeroid disorder and suggest RIPK1 as a feasible target for prelamin A-associated progeroid disorders.


Assuntos
Lamina Tipo A , Necroptose , Animais , Camundongos , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Mutação
6.
Vet Microbiol ; 291: 110026, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38364467

RESUMO

This study demonstrates for the first time that the matrix (M) protein of BEFV is a nuclear targeting protein that shuttles between the nucleus and the cytoplasm in a transcription-, carrier-, and energy-dependent manner. Experiments performed in both intact cells and digitonin-permeabilized cells revealed that M protein targets the nucleolus and requires carrier, cytosolic factors or energy input. By employing sequence and mutagenesis analyses, we have determined both nuclear localization signal (NLS) 6KKGKSK11 and nuclear export signal (NES) 98LIITSYL TI106 of M protein that are important for the nucleocytoplasmic shuttling of M protein. Furthermore, we found that both lamin A/C and chromosome maintenance region 1 (CRM-1) proteins could be coimmunoprecipitated and colocalized with the BEFV M protein. Knockdown of lamin A/C by shRNA and inhibition of CRM-1 by leptomycin B significantly reduced virus yield. Collectively, this study provides novel insights into nucleocytoplasmic shuttling of the BEFV M protein modulated by lamin A/C and CRM-1 and by a transcription- and carrier- and energy-dependent pathway.


Assuntos
Transporte Ativo do Núcleo Celular , Vírus da Febre Efêmera Bovina , Lamina Tipo A , Sinais de Localização Nuclear , Animais , Transporte Ativo do Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromossomos/metabolismo , Citoplasma/metabolismo , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Vírus da Febre Efêmera Bovina/metabolismo , Proteínas Estruturais Virais/metabolismo
7.
Biol Cell ; 116(3): e2300094, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38404031

RESUMO

BACKGROUND INFORMATION: Lamins are type V intermediate filament proteins underlying the inner nuclear membrane which provide structural rigidity to the nucleus, tether the chromosomes, maintain nuclear homeostasis, and remain dynamically associated with developmentally regulated regions of the genome. A large number of mutations particularly in the LMNA gene encoding lamin A/C results in a wide array of human diseases, collectively termed as laminopathies. Dilated Cardiomyopathy (DCM) is one such laminopathic cardiovascular disease which is associated with systolic dysfunction of left or both ventricles leading to cardiac arrhythmia which ultimately culminates into myocardial infarction. RESULTS: In this work, we have unraveled the epigenetic landscape to address the regulation of gene expression in mouse myoblast cell line in the context of the missense mutation LMNA 289A

Assuntos
Cardiomiopatia Dilatada , Animais , Humanos , Camundongos , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Lamina Tipo A/genética , Lamina Tipo A/química , Lamina Tipo A/metabolismo , Mutação , NF-kappa B/genética , NF-kappa B/metabolismo , Lâmina Nuclear
8.
Life Sci ; 341: 122489, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38340979

RESUMO

Lamins are inner nuclear membrane proteins that belong to the intermediate filament family. Lamin A/C lie adjacent to the heterochromatin structure in polymer form, providing skeletal to the nucleus. Based on the localization, lamin A/C provides nuclear stability and cytoskeleton to the nucleus and modulates chromatin organization and gene expression. Besides being the structural protein making the inner nuclear membrane in polymer form, lamin A/C functions as a signalling molecule involved in gene expression as an enhancer inside the nucleus. Lamin A/C regulates various cellular pathways like autophagy and energy balance in the cytoplasm. Its expression is highly variable in differentiated tissues, higher in hard tissues like bone and muscle cells, and lower in soft tissues like the liver and brain. In muscle cells, including the heart, lamin A/C must be expressed in a balanced state. Lamin A/C mutation is linked with various diseases, such as muscular dystrophy, lipodystrophy, and cardiomyopathies. It has been observed that a good number of mutations in the LMNA gene impact cardiac activity and its function. Although several works have been published, there are still several unexplored areas left regarding the lamin A/C function and structure in the cardiovascular system and its pathological state. In this review, we focus on the structural organization, expression pattern, and function of lamin A/C, its interacting partners, and the pathophysiology associated with mutations in the lamin A/C gene, with special emphasis on cardiovascular diseases. With the recent finding on lamin A/C, we have summarized the possible therapeutic interventions to treat cardiovascular symptoms and reverse the molecular changes.


Assuntos
Cardiomiopatias , Distrofias Musculares , Humanos , Lamina Tipo A/genética , Lamina Tipo A/química , Lamina Tipo A/metabolismo , Cardiomiopatias/genética , Cardiomiopatias/terapia , Distrofias Musculares/genética , Distrofias Musculares/patologia , Mutação , Polímeros
9.
Sci Rep ; 14(1): 4620, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409193

RESUMO

A group of misfolded prone-to-aggregate domains in disease-causing proteins has recently been shown to adopt unique conformations that play a role in fundamental biological processes. These processes include the formation of membrane-less sub-organelles, alternative splicing, and gene activation and silencing. The cellular responses are regulated by the conformational switching of prone-to-aggregate domains, independently of changes in RNA or protein expression levels. Given this, targeting the misfolded states of disease-causing proteins to redirect them towards their physiological conformations is emerging as an effective therapeutic strategy for diseases caused by protein misfolding. In our study, we successfully identified baicalein as a potent structure-correcting agent. Our findings demonstrate that baicalein can reconfigure existing TDP-43 aggregates into an oligomeric state both in vitro and in disease cells. This transformation effectively restores the bioactivity of misfolded TDP-43 proteins in cellular models of ALS and premature aging in progeria. Impressively, in progeria cells where defective lamin A interferes with TDP-43-mediated exon skipping, the formation of pathological TDP-43 aggregates is promoted. Baicalein, however, restores the functionality of TDP-43 and mitigates nuclear shape defects in these laminopathic cells. This establishes a connection between lamin A and TDP-43 in the context of aging. Our findings suggest that targeting physiological TDP-43 oligomers could offer a promising therapeutic avenue for treating aging-associated disorders.


Assuntos
Senilidade Prematura , Flavanonas , Progéria , Humanos , Progéria/genética , Lamina Tipo A/genética , Proteínas de Ligação a DNA/genética
10.
Genes (Basel) ; 15(1)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38255001

RESUMO

The LMNA gene encodes lamin A and lamin C, which play important roles in nuclear organization. Pathogenic variants in LMNA cause laminopathies, a group of disorders with diverse phenotypes. There are two main groups of disease-causing variants: missense variants affecting dimerization and intermolecular interactions, and heterozygous substitutions activating cryptic splice sites. These variants lead to different disorders, such as dilated cardiomyopathy and Hutchinson-Gilford progeria (HGP). Among these, the phenotypic terms for LMNA-associated cardiocutaneous progeria syndrome (LCPS), which does not alter lamin A processing and has an older age of onset, have been described. Here, we present the workup of an LMNA variant of uncertain significance, NM_170707.2 c. 4G>A, p.(Glu2Lys), in a 36-year-old female with severe calcific aortic stenosis, a calcified mitral valve, premature aging, and a family history of similar symptoms. Due to the uncertainty of in silico predictions for this variant, an assessment of nuclear morphology was performed using the immunocytochemistry of stable cell lines to indicate whether the p.(Glu2Lys) had a similar pathogenic mechanism as a previously described pathogenic variant associated with LCPS, p.Asp300Gly. Indirect immunofluorescence analysis of nuclei from stable cell lines showed abnormal morphology, including lobulation and occasional ringed nuclei. Relative to the controls, p.Glu2Lys and p.Asp300Gly nuclei had significantly (p < 0.001) smaller average nuclear areas than controls (mean = 0.10 units, SD = 0.06 for p.Glu2Lys; and mean = 0.09 units, SD = 0.05 for p.Asp300Gly versus mean = 0.12, SD = 0.05 for WT). After functional studies and segregation studies, this variant was upgraded to likely pathogenic. In summary, our findings suggest that p.Glu2Lys impacts nuclear morphology in a manner comparable to what was observed in p.Asp300Gly cells, indicating that the variant is the likely cause of the LCPS segregating within this family.


Assuntos
Cardiomiopatias , Cardiomiopatia Dilatada , Progéria , Feminino , Humanos , Adulto , Progéria/genética , Lamina Tipo A/genética , Cardiomiopatia Dilatada/genética , Linhagem Celular , Proteínas de Filamentos Intermediários
11.
Nat Cell Biol ; 26(2): 235-249, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38267537

RESUMO

The mechanistic target of rapamycin complex 1 (mTORC1) is a master regulator of cell growth, metabolism and autophagy. Multiple pathways modulate mTORC1 in response to nutrients. Here we describe that nucleus-cytoplasmic shuttling of p300/EP300 regulates mTORC1 activity in response to amino acid or glucose levels. Depletion of these nutrients causes cytoplasm-to-nucleus relocalization of p300 that decreases acetylation of the mTORC1 component raptor, thereby reducing mTORC1 activity and activating autophagy. This is mediated by AMP-activated protein kinase-dependent phosphorylation of p300 at serine 89. Nutrient addition to starved cells results in protein phosphatase 2A-dependent dephosphorylation of nuclear p300, enabling its CRM1-dependent export to the cytoplasm to mediate mTORC1 reactivation. p300 shuttling regulates mTORC1 in most cell types and occurs in response to altered nutrients in diverse mouse tissues. Interestingly, p300 cytoplasm-nucleus shuttling is altered in cells from patients with Hutchinson-Gilford progeria syndrome. p300 mislocalization by the disease-causing protein, progerin, activates mTORC1 and inhibits autophagy, phenotypes that are normalized by modulating p300 shuttling. These results reveal how nutrients regulate mTORC1, a cytoplasmic complex, by shuttling its positive regulator p300 in and out of the nucleus, and how this pathway is misregulated in Hutchinson-Gilford progeria syndrome, causing mTORC1 hyperactivation and defective autophagy.


Assuntos
Progéria , Humanos , Camundongos , Animais , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Progéria/genética , Progéria/metabolismo , Transporte Ativo do Núcleo Celular , Proteína Regulatória Associada a mTOR/metabolismo , Aminoácidos/metabolismo , Lamina Tipo A/genética , Lamina Tipo A/metabolismo
12.
Lab Med ; 55(1): 62-70, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-37246508

RESUMO

OBJECTIVE: We studied the clinical and molecular features of a family with hypertrophic cardiomyopathy (HCM). BACKGROUND: A very heterogeneous disease affecting the heart muscle, HCM is mostly caused by variants in the proteins of sarcomeres. The detection of HCM pathogenic variants can affect the handling of patients and their families. METHODS: Whole-exome sequencing (WES) was performed to assess the genetic cause(s) of HCM in a consanguineous Iranian family. RESULTS: Missense likely pathogenic variant c.1279C>T (p.Arg427Cys) within exon 7 of the LMNA gene (NM_170707) was found. The segregations were confirmed by polymerase chain reaction-based Sanger sequencing. CONCLUSIONS: Variant c.1279C>T (p.Arg427Cys) in the LMNA gene seemed to have been the cause of HCM in the family. A few LMNA gene variants related to HCM phenotypes have been recognized so far. Identifying HCM genetic basis confers significant opportunities to understand how the disease can develop and, by extension, how this progression can be arrested. Our study supports WES effectiveness for first-tier variant screening of HCM in a clinical setting.


Assuntos
Cardiomiopatia Hipertrófica , Humanos , Sequenciamento do Exoma , Irã (Geográfico) , Linhagem , Cardiomiopatia Hipertrófica/diagnóstico , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/patologia , Fenótipo , Mutação , Lamina Tipo A/genética
13.
Am Heart J ; 269: 8-14, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38048861

RESUMO

BACKGROUND AND AIMS: Atrioventricular block (AVB) is a degenerative disease and more commonly encountered in elderly patients, but unusual and often of unknown etiology in young patients. This study aimed to investigate the potential contributions of genetic variations to AVB of unknown reasons in young patients. METHODS: We enrolled 41 patients aged <55 years with high-degree AVB of unknown etiology whose clinical and genetic data were collected. RESULTS: Genetic variants were identified in 20 (20/41, 48.8%) patients, 11 (11/20, 55%) of whom had LMNA variants including 3 pathogenic (c.961C > T, c.936+1G > T and c.646C > T), 4 likely pathogenic (c.1489-1G > C, c.265C > A, c.1609-2A > G and c.1129C > T) and 3 of uncertain significance (c.1158-3C > G, c.776A > G and c.674G > T). Compared to those without LMNA variants, patients with LMNA variants demonstrated a later age at onset of AVB (41.45 ± 9.89 years vs 32.93 ± 12.07 years, P = .043), had more prevalent family history of cardiac events (81.8% vs 16.7%, P < .000), suffered more frequently atrial (81.8% vs 10.0%, P < .000) and ventricular (72.7% vs 10.0%, P < .000) arrhythmias, and were more significantly associated with enlargement of left atrium (39.91 ± 7.83 mm vs 34.30 ± 7.54 mm, P = .043) and left ventricle (53.27 ± 8.53 mm vs 47.77 ± 6.66 mm, P = .036). CONCLUSIONS: Our findings provide insights into the genetic etiology of AVB in young patients. LMNA variants are predominant in genotype positive patients and relevant to distinctive phenotypic properties.


Assuntos
Bloqueio Atrioventricular , Idoso , Humanos , Bloqueio Atrioventricular/etiologia , Bloqueio Atrioventricular/genética , Prevalência , Arritmias Cardíacas , Lamina Tipo A/genética
14.
J Clin Endocrinol Metab ; 109(3): e1204-e1224, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-37843397

RESUMO

CONTEXT: Lipodystrophy syndromes are a heterogeneous group of rare genetic or acquired disorders characterized by generalized or partial loss of adipose tissue. LMNA-related lipodystrophy syndromes are classified based on the severity and distribution of adipose tissue loss. OBJECTIVE: We aimed to annotate all clinical and metabolic features of patients with lipodystrophy syndromes carrying pathogenic LMNA variants and assess potential genotype-phenotype relationships. METHODS: We retrospectively reviewed and analyzed all our cases (n = 115) and all published cases (n = 379) curated from 94 studies in the literature. RESULTS: The study included 494 patients. The most common variants in our study, R482Q and R482W, were associated with similar metabolic characteristics and complications though those with the R482W variant were younger (aged 33 [24] years vs 44 [25] years; P < .001), had an earlier diabetes diagnosis (aged 27 [18] vs 40 [17] years; P < .001) and had lower body mass index levels (24 [5] vs 25 [4]; P = .037). Dyslipidemia was the earliest biochemical evidence described in 83% of all patients at a median age of 26 (10) years, while diabetes was reported in 61% of cases. Among 39 patients with an episode of acute pancreatitis, the median age at acute pancreatitis diagnosis was 20 (17) years. Patients who were reported to have diabetes had 3.2 times, while those with hypertriglyceridemia had 12.0 times, the odds of having pancreatitis compared to those who did not. CONCLUSION: This study reports the largest number of patients with LMNA-related lipodystrophy syndromes to date. Our report helps to quantify the prevalence of the known and rare complications associated with different phenotypes and serves as a comprehensive catalog of all known cases.


Assuntos
Diabetes Mellitus , Lipodistrofia , Pancreatite , Humanos , Adulto , Adulto Jovem , Mutação , Estudos Retrospectivos , Doença Aguda , Lamina Tipo A/genética , Lipodistrofia/diagnóstico , Lipodistrofia/epidemiologia , Lipodistrofia/genética , Diabetes Mellitus/genética
15.
J Cell Biol ; 223(1)2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37966721

RESUMO

LMNA mutations cause laminopathies that afflict the cardiovascular system and include Hutchinson-Gilford progeria syndrome. The origins of tissue specificity in these diseases are unclear as the lamin A/C proteins are broadly expressed. We show that LMNA transcript levels are not predictive of lamin A/C protein levels across tissues and use quantitative proteomics to discover that tissue context and disease mutation each influence lamin A/C protein's lifetime. Lamin A/C's lifetime is an order of magnitude longer in the aorta, heart, and fat, where laminopathy pathology is apparent, than in the liver and intestine, which are spared from the disease. Lamin A/C is especially insoluble in cardiovascular tissues, which may limit degradation and promote protein stability. Progerin is even more long lived than lamin A/C in the cardiovascular system and accumulates there over time. Progerin accumulation is associated with impaired turnover of hundreds of abundant proteins in progeroid tissues. These findings identify impaired lamin A/C protein turnover as a novel feature of laminopathy syndromes.


Assuntos
Lamina Tipo A , Progéria , Humanos , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Mutação , Progéria/genética , Progéria/patologia , Proteômica
16.
J Cell Biol ; 223(1)2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38078930

RESUMO

Mutations in genes encoding nuclear lamins cause diseases called laminopathies. In this issue, Hasper et al. (https://doi.org/10.1083/jcb.202307049) show that lamin A/C and the prelamin A variant in Hutchinson-Gilford progeria syndrome have relatively long lifetimes in affected tissues.


Assuntos
Lamina Tipo A , Progéria , Humanos , Laminas/genética , Lamina Tipo A/genética , Lâmina Nuclear , Progéria/genética
17.
Nucleus ; 14(1): 2288476, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38050983

RESUMO

Several related progeroid disorders are caused by defective post-translational processing of prelamin A, the precursor of the nuclear scaffold protein lamin A, encoded by LMNA. Prelamin A undergoes farnesylation and additional modifications at its C-terminus. Subsequently, the farnesylated C-terminal segment is cleaved off by the zinc metalloprotease ZMPSTE24. The premature aging disorder Hutchinson Gilford progeria syndrome (HGPS) and a related progeroid disease, mandibuloacral dysplasia (MAD-B), are caused by mutations in LMNA and ZMPSTE24, respectively, that result in failure to process the lamin A precursor and accumulate permanently farnesylated forms of prelamin A. The farnesyl transferase inhibitor (FTI) lonafarnib is known to correct the aberrant nuclear morphology of HGPS patient cells and improves lifespan in children with HGPS. Importantly, and in contrast to a previous report, we show here that FTI treatment also improves the aberrant nuclear phenotypes in MAD-B patient cells with mutations in ZMPSTE24 (P248L or L425P). As expected, lonafarnib does not correct nuclear defects for cells with lamin A processing-proficient mutations. We also examine prelamin A processing in fibroblasts from two individuals with a prevalent laminopathy mutation LMNA-R644C. Despite the proximity of residue R644 to the prelamin A cleavage site, neither R644C patient cell line shows a prelamin A processing defect, and both have normal nuclear morphology. This work clarifies the prelamin A processing status and role of FTIs in a variety of laminopathy patient cells and supports the FDA-approved indication for the FTI Zokinvy for patients with processing-deficient progeroid laminopathies, but not for patients with processing-proficient laminopathies.


Assuntos
Lipodistrofia , Progéria , Criança , Humanos , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Progéria/tratamento farmacológico , Progéria/genética , Progéria/metabolismo , Inibidores Enzimáticos/farmacologia , Mutação , Lipodistrofia/metabolismo , Fibroblastos/metabolismo , Transferases/genética , Transferases/metabolismo , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo , Proteínas de Membrana/metabolismo
18.
Acta Myol ; 42(2-3): 43-52, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38090549

RESUMO

Lamins A/C (encoded by LMNA gene) can lead to dilated cardiomyopathy (DCM). This pilot study sought to explore the postgenomic phenotype of end-stage lamin heart disease. Consecutive patients with end-stage lamin heart disease (LMNA-group, n = 7) and ischaemic DCM (ICM-group, n = 7) undergoing heart transplantation were prospectively enrolled. Samples were obtained from left atrium (LA), left ventricle (LV), right atrium (RA), right ventricle (RV) and interventricular septum (IVS), avoiding the infarcted myocardial segments in the ICM-group. Samples were analysed using a discovery 'shotgun' proteomics approach. We found that 990 proteins were differentially abundant between LMNA and ICM samples with the LA being most perturbed (16-fold more than the LV). Abundance of lamin A/C protein was reduced, but lamin B increased in LMNA LA/RA tissue compared to ICM, but not in LV/RV. Carbonic anhydrase 3 (CA3) was over-abundant across all LMNA tissue samples (LA, LV, RA, RV, and IVS) when compared to ICM. Transthyretin was more abundant in the LV/RV of LMNA compared to ICM, while sarcomeric proteins such as titin and cardiac alpha-cardiac myosin heavy chain were generally less abundant in RA/LA of LMNA. Protein expression profiling and enrichment analysis pointed towards sarcopenia, extracellular matrix remodeling, deficient myocardial energetics, redox imbalances, and abnormal calcium handling in LMNA samples. Compared to ICM, end-stage lamin heart disease is a biventricular but especially a biatrial disease appearing to have an abundance of lamin B, CA3 and transthyretin, potentially hinting to compensatory responses.


Assuntos
Cardiomiopatia Dilatada , Ventrículos do Coração , Humanos , Proteoma/genética , Pré-Albumina/genética , Lamina Tipo B/genética , Projetos Piloto , Cardiomiopatia Dilatada/genética , Lamina Tipo A/genética , Átrios do Coração/metabolismo , Mutação
19.
J Physiol Sci ; 73(1): 27, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37940872

RESUMO

Emery-Dreifuss muscular dystrophy (EDMD), caused by mutations in genes encoding nuclear envelope proteins, is clinically characterized by muscular dystrophy, early joint contracture, and life-threatening cardiac abnormalities. To elucidate the pathophysiological mechanisms underlying striated muscle involvement in EDMD, we previously established a murine model with mutations in Emd and Lmna (Emd-/-/LmnaH222P/H222P; EH), and reported exacerbated skeletal muscle phenotypes and no notable cardiac phenotypes at 12 weeks of age. We predicted that lack of emerin in LmnaH222P/H222P mice causes an earlier onset and more pronounced cardiac dysfunction at later stages. In this study, cardiac abnormalities of EDMD mice were compared at 18 and 30 weeks of age. Contrary to our expectations, physiological and histological analyses indicated that emerin deficiency causes no prominent differences of cardiac involvement in LmnaH222P/H222P mice. These results suggest that emerin does not contribute to cardiomyopathy progression in LmnaH222P/H222P mice.


Assuntos
Cardiomiopatias , Distrofia Muscular de Emery-Dreifuss , Camundongos , Animais , Modelos Animais de Doenças , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Distrofia Muscular de Emery-Dreifuss/genética , Distrofia Muscular de Emery-Dreifuss/metabolismo , Distrofia Muscular de Emery-Dreifuss/patologia , Cardiomiopatias/genética , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...